| Asunto: | [redluzargentina] Más sobre Júpiter | Fecha: | Jueves, 27 de Diciembre, 2007 19:49:59 (-0300) | Autor: | Alicia Y Amira Contursi y Manzur <alicia.amira @.....com>
|
|
From: Guillermo <guillermo@a2000.es
> Date: 12-dic-2007 15:20 Subject: [GAP] Más sobre Júpiter
Más noticias sobre los cambios en el planeta
Júpiter anunciados por los mensajes del Cielo
"Júpiter está en medio de un cambio global"
"Una nueva tormenta sobre el planeta Júpiter insinúa un cambio climático"
Por Paul Joseph Watson (Prison Planet)
Jueves 16 de noviembre de 2.007
Una nueva tormenta sobre Júpiter insinúa un cambio climático según se informa en <
space.com> Las últimas imágenes podrían proporcionar pruebas de que Júpiter se encuentra en medio de un cambio global que puede modificar las temperaturas tanto como diez grados Fahrenheit sobre diferentes partes del mundo.
Además, según informa la agencia de noticias Associated Press, la radiación solar que llega ahora a la Tierra es un 0,036% más cálida de lo que era en 1986, cuando comenzó el actual ciclo solar, según informó
un investigador en un estudio publicado en la revista "Science". La conclusión se basa en un análisis de los satélites que miden la temperatura de la luz solar.
http://groups.yahoo.com/group/DiscerningAngels/message/33050 ===============================================
Aumenta la radiación solar sobre la Tierra
Desde los años 70, la cantidad de radiación que el Sol emite, durante
los momentos de baja actividad, se ha incrementado en casi un 0,05 por ciento por década, según un estudio realizado por científicos de la Nasa. Si esta tendencia continuara así durante varias décadas más, la
Tierra podría afrontar un sustancial cambio climático.
El resultado no es una sorpresa, explica Richard Willson, del Goddard Institute for Space Studies y de la Columbia University. Los registros históricos ya indican que la radiación solar se ha ido incrementando
desde finales del siglo XIX. Si una tendencia comparable a la mencionada en el estudio hubiera estado presente durante todo el siglo XX, sería un componente significativo en el calentamiento global que otros informes
sugieren se ha producido durante los últimos 100 años.
El ciclo solar se desarrolla aproximadamente cada 11 años. Cuando el Sol atraviesa su "máximo solar", la actividad magnética y las manchas
solares alcanzan su punto álgido.
La diferencia encontrada en la radiación solar durante los últimos 24 años ha sido de un 0,1 por ciento. Ello no es suficiente para causar un notable cambio climático, pero sí lo sería si la tendencia se prolongara
durante un siglo o más. Ha sido necesario un período de un cuarto de siglo de observaciones desde satélite para poder detectar con precisión este efecto.
La Irradiación Solar Total (TSI) es la energía que recibe la Tierra
procedente del Sol, en todas las longitudes de onda, fuera de la atmósfera. La interacción de la TSI con esta última, los océanos y las tierras emergidas es el principal factor en la determinación de nuestro
clima. Para que nos hagamos una idea, se puede producir un descenso de un 0,2 por ciento en la TSI durante el paso de un gran grupo de manchas solares a través del hemisferio visible del Sol, algo que precisa de
aproximadamente una semana. Estos cambios son relativamente insignificantes comparados con la emisión total de energía, aunque equivale a toda la que consume la humanidad en un año. Por otro lado, si las variaciones son persistentes y se ven sostenidas durante muchas
décadas, sí pueden desarrollar efectos climáticos significativos.
Willson y su equipo midieron las tendencias de irradiación solar reuniendo los datos ofrecidos por seis satélites desde 1978 (Nimbus-7,
SMM, UARS, ACRIMSAT, ERBS y SOHO). Sus periodos de funcionamiento se han solapado a lo largo de los años, lo que ha proporcionado una mayor fiabilidad a los resultados.
http://www.amazings.com/ciencia =============================================
Extracto de una entrevista sobre Júpiter a Alex Collier
"Nuestro Sistema Solar es binario ya que Júpiter es un Sol en la quinta dimensión"
Hola a todos, sólo un extracto de una entrevista a Alex Collier
- Por lo tanto, ¿quiere decir esto que la sangre extraterrestre está basada en el cobre?
Alex Collier.- Correcto. Usted es la primera persona que me pregunta
eso.
- Por lo tanto, deben proceder de un sistema estelar binario.
Alex Collier.- Sí, así es. Dicen que un buen número de ellos son de sistemas binarios.
- ¿Y nuestro Sistema Solar es aquí binario, pero en una frecuencia
diferente donde Júpiter es un Sol en la quinta densidad?
Alex Collier.- Sí.
- ¡Vaya! ¿No es eso interesante?
http://www.fourwinds10.com/siterun_data/space/ufo_and_aliens/news.php?q=1197398588
http://groups.yahoo.com/group/DiscerningAngels/message/33056 ==========================================================
Cásper dice que estamos muy cerca del cambio
Martes 11 de diciembre de 2.007
Es mejor que no nos dediquemos a "charlar" ahora ya que estamos muy cerca. La noticia es que todo es bueno. Manténganse alerta.- Cásper el Fantasma.
http://groups.yahoo.com/group/DiscerningAngels/message/33067 =======================================================
El telescopio espacial Hubble detectó cambios en la atmósfera de Júpiter
Washington. 28 jun 07 (EFE).- El telescopio espacial Hubble de la Nasa
ha captado modificaciones de coloración en la atmósfera de Júpiter, aparentemente debido al cambio de estaciones.
La turbulenta atmósfera de Júpiter se caracteriza por bandas de nubes amarillas, marrones y blancas que fluyen en diversas direcciones y en
latitudes distintas.
La cámara planetaria y gran angular del observatorio que gira en órbita terrestre detectó los cambios de color en esas nubes en fotografías tomadas el pasado 25 de marzo y el 5 de junio, señaló hoy la Nasa en un
comunicado.
Se trata de bandas completas que han cambiado de color. En algunas, los tonos se han oscurecido y en otras son mucho más claros, aparentemente como resultado de fuertes tormentas, indicó la agencia espacial
estadounidense.
Un portavoz de la Nasa explicó que es posible que las modificaciones atmosféricas sean resultado de un cambio de estaciones en el largo año de Júpiter.
Júpiter tiene un movimiento de traslación en torno al Sol que dura doce
años de la Tierra. ==========================================================
El planeta Júpiter
Júpiter es el quinto planeta del Sistema Solar. Forma parte de los denominados planetas exteriores o gaseosos. Recibe su nombre del dios
romano Júpiter (Zeus en la mitología griega).
Se trata del planeta que ofrece un mayor brillo a lo largo del año dependiendo de su fase. Es, además, después del Sol el mayor cuerpo celeste del Sistema Solar, con una masa de más de 310 veces la terrestre
(318 veces), y un diámetro unas 11 veces más grande.
Júpiter es un cuerpo masivo gaseoso, formado principalmente por hidrógeno y helio, carente de una superficie interior definida. Entre los detalles atmosféricos se destacan la Gran mancha roja, un enorme
anticiclón situado en las latitudes tropicales del hemisferio sur, la estructura de nubes en bandas y zonas, y la fuerte dinámica de vientos zonales con velocidades de hasta 140 m/s (504 km/h).
Características generales
Júpiter es el más masivo de los planetas del Sistema Solar: su masa equivale a unas 2,47 veces la suma de las masas de todos los demás planetas juntos. Más de un centenar de planetas extrasolares han sido
descubiertos con masas similares o superiores a la masa de Júpiter. Júpiter también posee la velocidad de rotación más rápida de los planetas del Sistema Solar: gira sobre su eje en poco menos de 10 horas. Esta velocidad de rotación se deduce a partir de las medidas de campo
magnético del planeta. La atmósfera se encuentra dividida en regiones con fuertes vientos zonales con periodos de rotación que van desde las 9h 50m 30s en la zona ecuatorial a las 9h 55m 40s en el resto del planeta.
El planeta es conocido por una enorme formación meteorológica, la Gran Mancha Roja, fácilmente vislumbrable por astrónomos aficionados dado su gran tamaño, superior al de la Tierra. Su atmósfera está permanentemente
cubierta de nubes que permiten trazar la dinámica atmosférica y muestran un alto grado de turbulencia.
Tomando como referencia la distancia al Sol Júpiter es el quinto planeta del Sistema Solar. Su órbita se sitúa aproximadamente a 5 UA, unos 750
millones de km del Sol.
Atmósfera
El aficionado inglés A. S. Williams hizo el primer estudio sistemático sobre la atmósfera de Júpiter en 1896. La atmósfera de Júpiter está dividida en cinturones oscuros llamados Bandas y regiones claras
llamadas Zonas, todos ellos en la dirección de los paralelos. Las bandas y zonas delimitan un sistema de corrientes de viento alternantes en dirección con la latitud y en general de gran intensidad; por ejemplo,
los vientos en el ecuador soplan a velocidades en torno a 100 m/s (360 km/h). En la Banda Ecuatorial Norte, los vientos pueden llegar a soplar a 140 m/s (500 km/h).También jupiter es el planeta con mayor fuerza de
rotación ya que tiende a rotar con una fuerza de 2.000.000 de toneladas.
El científico inglés Robert Hooke observó en 1664 una gran formación meteorológica que podría ser la Gran Mancha Roja (conocida en inglés por
las siglas GRS). Sin embargo no parecen existir informes posteriores de la observación de tal fenómeno hasta el siglo XX. En todo caso, varía mucho tanto de color como de intensidad. Las imágenes obtenidas por el
Observatorio Yerkes a finales del siglo XX muestran una mancha roja alargada, ocupando el mismo rango de latitudes pero con el doble de extensión longitudinal. A veces, es de un color rojo fuerte, y realmente
muy notable, y en otras ocasiones palidece hasta hacerse insignificante. Históricamente en un principio se pensó que la gran mancha roja era la cima de una montaña gigantesca o una meseta que salía por encima de las
nubes. Esta idea fue sin embargo desechada en el siglo XIX al constatarse espectroscópicamente la composición de hidrógeno y helio de la atmósfera y determinarse que se trataba de un planeta fluido. El tamaño actual de la mancha roja es aproximadamente unas dos veces y
media el de la Tierra. Meteorológicamente la Gran Mancha Roja es un enorme anticiclón muy estable en el tiempo. Los vientos en la periferia del vórtice tienen una intensidad cercana a los 400 km/h.
Recientemente (marzo 2006) se anunció que se había formado una segunda
mancha roja, aproximadamente de la mitad del tamaño de la Gran Mancha Roja. La segunda mancha roja se formó a partir de la fusión de tres grandes óvalos blancos presentes en Júpiter desde los años 40,
denominados BC, DE y FA, y fusionados en uno solo entre los años 1998 y 2000 dando lugar a un único óvalo blanco denominado Óvalo blanco BA, [1] cuyo color evolucionó hacia los mismos tonos que la mancha roja a
comienzos del 2006. [2] La coloración rojiza de ambas manchas puede producirse cuando los gases de la atmósfera interior del planeta se elevan en la atmósfera y sufren la interacción de la radiación solar. Las mediciones en el infrarrojo sugieren que ambas manchas se elevan por
encima de las nubes principales. El paso por tanto de Óvalo Blanco a mancha roja podría ser un síntoma de que la tormenta está ganando fuerza. El 8 de abril de 2006, la Cámara de Seguimiento Avanzada del Hubble tomó nuevas imágenes de la joven tormenta.
Estructura de nubes
Las nubes superiores de Júpiter están formadas probablemente de cristales congelados de amoníaco. El color rojizo viene dado por algún tipo de agente colorante desconocido aunque se sugieren compuestos de
azufre o fósforo (elemento). Por debajo de las nubes visibles Júpiter posee muy posiblemente nubes más densas de un compuesto químico llamado hidrosulfuro de amonio, NH4SH. A una presión en torno a 5-6 Pa existe
posiblemente una capa aún más densa de nubes de agua. Una de las pruebas de la existencia de tales nubes la constituye la observación de descargas eléctricas compatibles con tormentas profundas a estos niveles
de presión. Tales tormentas convectivas pueden en ocasiones extenderse desde los 5 Pa hasta los 300-500 hPa, unos 150 km en vertical.
Estructura interna
En el interior del planeta el hidrógeno, helio y el argón (gas noble que
se acumula en la superficie de Júpiter), se comprimen progresivamente. El hidrógeno molecular se comprime de tal manera que se transforma en un líquido de carácter metálico a profundidades de unos 15.000km con
respecto a la superficie. Más abajo se espera la existencia de un núcleo rocoso formado principalmente por materiales helados y más densos. La existencia de las diferentes capas viene determinada por el estudio del
potencial gravitatorio del planeta medido por las diferentes sondas espaciales. De existir el núcleo interno probaría la teoría de formación planetaria a partir de un disco de planetesimales. Júpiter es tan masivo
que todavía no se ha liberado del calor acumulado en su formación y posee por lo tanto una importante fuente interna de energía calórica que ha sido medida de manera precisa y equivale a 5,4 W/m*. Esto significa
que el interior del planeta está mezclado de manera eficaz por lo menos hasta niveles cercanos a las nubes de agua a 5 bar.
Magnetosfera
Júpiter tiene una magnetosfera extensa formada por un campo magnético de
gran intensidad. El campo magnético de Júpiter podría verse desde la Tierra ocupando un espacio equivalente al de la Luna llena a pesar de estar mucho más lejos. El campo magnético de Júpiter es de hecho la
estructura de mayor tamaño en el Sistema Solar. Las partículas cargadas son recogidas por el campo magnético joviano y conducidas hacia las regiones polares donde producen impresionantes auroras. Por otro lado las partículas expulsadas por los volcanes de la luna Ío forman un
toroide de rotación en el que el campo magnético atrapa material adicional que es conducido a través de las líneas de campo sobre la atmósfera superior del planeta.
Se piensa que el origen de la magnetosfera se debe a que en el interior
profundo de Júpiter, el hidrógeno se comporta como un metal debido a la altísima presión. Los metales son, por supuesto, excelentes conductores de electrones, y la rotación del planeta produce corrientes, las cuales
a su vez producen un extenso campo magnético.
Las sondas Pioneer confirmaron la existencia del campo magnético joviano y su intensidad, más de 10 veces superior al terrestre conteniendo más de 20.000 veces la energía asociada al campo terrestre. Los Pioneer
descubrieron que la onda de choque de la magnetosfera joviana se extiende a 26 millones de kilómetros del planeta, con la cola magnética extendiéndose más allá de la órbita de Saturno.
Las variaciones del viento solar originan rápidas variaciones en tamaño
de la magnetosfera. Este aspecto fue estudiado por las sondas Voyager. También se descubrió que átomos cargados eran expulsados de la magnetosfera joviana con gran intensidad y eran capaces de alcanzar la órbita de la Tierra. También se encontraron corrientes eléctricas
fluyendo de Júpiter a algunas de sus lunas, particularmente Ío y también en menor medida Europa.
Satélites
Los principales satélites de Júpiter fueron descubiertos por Galileo Galilei el 7 de enero de 1610, razón por la que se les llama en
ocasiones satélites galileanos. Reciben sus nombres de la mitología griega si bien en tiempos de Galileo se les denominaba por números romanos dependiendo de su orden de cercanía al planeta. Originalmente, Galileo bautizó a los satélites como "Mediceos", en honor a Cosme de
Médicis, duque de Florencia. El descubrimiento de estos satélites constituyó un punto de inflexión en la ya larga disputa entre los que sostenían la idea de un sistema geocéntrico, es decir, con la Tierra en
el centro del universo, y la copernicana (o sistema heliocéntrico, es decir, con el Sol en el centro del Universo), en la cual era mucho más fácil explicar el movimiento y la propia existencia de los satélites naturales de Júpiter.
Los cuatro satélites principales son muy distintos entre sí. Ío, el más interior, es un mundo volcánico con una superficie en constante renovación y calentado por efectos de marea provocados por Júpiter y
Europa. Europa, el siguiente satélite, es un mundo helado bajo el cual se especula la presencia de océanos líquidos de agua e incluso la presencia de vida. Ganímedes, con un diámetro de 5268 km, es el satélite más grande de todo el sistema solar. Está compuesto por un núcleo de
hierro cubierto por un manto rocoso y de hielo. Calisto se caracteriza por ser el cuerpo que presenta mayor cantidad de cráteres producidos por impactos en todo el sistema solar.
Satélites menores
Además de los mencionados satélites galileanos, las distintas sondas espaciales enviadas a Júpiter y observaciones desde la Tierra han ampliado el número total de satélites de Júpiter hasta 63. Estos satélites menores se pueden dividir en dos grupos:
* Grupo de Amaltea: son cuatro satélites pequeños que giran en torno a Júpiter en órbitas internas a las de los satélites galileanos. Este grupo está compuesto por (en orden de distancia) Metis, Adrastea,
Amaltea y Tebe.
* Satélites irregulares: es un grupo numeroso de satélites en órbitas muy lejanas de Júpiter; de hecho, están tan lejos de este que la gravedad del Sol distorsiona perceptiblemente sus órbitas. Con la
excepción de Himalia, son satélites generalmente pequeños. A su vez, este grupo se puede dividir en dos, los progrados y retrógrados. La mayoría de estos objetos tienen un origen muy distinto al de los satélites mayores siendo posiblemente cuerpos capturados y no formados
en sus órbitas actuales. Otros pueden ser los restos de impactos y fragmentaciones de cuerpos mayores anteriores. Miembros de este grupo incluyen a Aedea, Aitné, Ananké, Arque, Autónoe, Caldona, Cale, Cálice,
Calírroe, Carme, Carpo, Cilene, Elara, Erínome, Euante, Euporia, Eurídome, Harpálice, Hegemone, Helike, Hermipé, Himalia, Isonoe, Leda, Lisitea, Megaclite, Mnemea, Ortosia, Pasífae, Pasítea, Praxídice, Sinope, Sponde, Táigete, Telxínoe, Temisto, Tione, Yocasta y otros 23
que no tienen aún nombre definitivo.
Asteroides troyanos
Además de sus satélites, el campo gravitacional de Júpiter controla las órbitas de numerosos asteroides que se encuentran situados en los puntos
de Lagrange precediendo y siguiendo a Júpiter en su órbita alrededor del Sol. Estos asteroides se denominan asteroides troyanos y se dividen en cuerpos griegos y troyanos para conmemorar la Ilíada. El primero de
estos asteroides en ser descubierto fue 588 Aquiles, por Max Wolf en 1906. En la actualidad se conocen cientos de asteroides troyanos. El mayor de todos ellos es el asteroide 624 Héctor.
Anillos de Júpiter
Júpiter posee un tenue sistema de anillos que fue descubierto por la sonda Voyager 1 en marzo de 1979. El anillo principal tiene unos 6500 km de anchura, orbita el planeta a cerca de 1.000.000 km de distancia y
tiene un espesor vertical inferior a la decena de kilómetros. Su espesor óptico es tan reducido que solamente ha podido ser observado por las sondas espaciales Voyager 1 y 2 y Galileo.
Los anillos tienen tres segmentos: el más interno denominado halo (con
forma de toro en vez de anillo), el intermedio que se considera el principal por ser el más brillante y el exterior, más tenue pero de mayor tamaño. Los anillos parecen formados por polvo en vez de hielo como los anillos de Saturno. El anillo principal esta compuesto
probablemente por material de los satélites Adrastea y Metis, este material se ve arrastrado poco a poco hacia Jupiter gracias a su fuerte gravedad. A su vez se va reponiendo por los impactos sobre estas lunas
que se encuentran en la misma orbita que el anillo principal. Las lunas Amaltea y Tebas realizan una tarea similar, proveyendo de material al anillo exterior.
Impacto del cometa SL9
En julio de 1994 el cometa Shoemaker-Levy 9 impactó contra la atmósfera
de Júpiter. El cometa había sido disgregado por la acción de la gravedad de Júpiter en numerosos fragmentos en un paso anterior y cercano por el planeta.
Numerosos observatorios realizaron campañas intensivas de observación
del planeta con motivo de este suceso único incluyendo el Telescopio Espacial Hubble y la sonda Galileo que en aquel momento se encontraba acercándose todavía al planeta. Los impactos mostraron la formación de
impresionantes bolas de fuego en los minutos posteriores a cada impacto de cuyo análisis se pudo deducir la masa de cada uno de los fragmentos del cometa. Los restos dejados en la atmósfera se observaron como nubes
negras en expansión durante semanas propagándose como ondas de choque. Sus propiedades permitieron analizar tanto propiedades del cometa como de la atmósfera joviana y su interior profundo por métodos análogos a
los de la sismología terrestre. Los restos del cometa pudieron ser detectados durante varios años en la alta atmósfera del hemisferio Sur de Júpiter, presentes como partículas finas oscuras y mediante una mayor
concentración atmosférica de determinados compuestos químicos aportados por el cometa.
Se ha estimado que Júpiter, debido a su gran masa, perturba las regiones cometarias como la nube de Oort atrayendo la mayoría de los cometas que
caen sobre el Sistema Solar interior. No obstante, también los acerca sobre sí mismo por lo que es difícil estimar la importancia que tiene Júpiter en la llegada de cometas a la Tierra.
Formación de Júpiter
Las teorías de formación del planeta son de dos tipos: Formación a partir de un núcleo de hielos de una masa en torno a diez veces la masa terrestre capaz de atraer y acumular el gas de la nebulosa protosolar o
formación temprana por colapso gravitatorio directo como ocurriría en el caso de una estrella. Ambos modelos tienen implicaciones muy distintas para los modelos generales de formación del Sistema Solar y de los
sistemas de planetas extrasolares. En ambos casos los modelos tienen dificultades para explicar el tamaño y masa total del planeta, su distancia orbital de 5 UA, que parece indicar que Júpiter no se desplazó
sustancialmente de la región de formación, y la composición química de su atmósfera, en particular de gases nobles, enriquecidos con respecto al Sol. El estudio de la estructura interna de Júpiter, y en particular,
la presencia o ausencia de un núcleo interior permitiría distinguir ambas posibilidades. Las propiedades del interior del planeta pueden explorarse de manera remota a partir de las perturbaciones gravitatorias
detectadas por una sonda espacial cercana. Actualmente existen propuestas de misiones espaciales para la próxima década que podrían responder a estos interrogantes.
Exploración espacial de Júpiter
Júpiter ha sido visitado por varias misiones espaciales de Nasa desde 1973. Las misiones Pioneer 10 y Pioneer 11 realizaron una exploración preliminar con sobrevuelos del planeta. La sonda Pioneer 10 sobrevoló Jupiter por primera vez en la historia en Diciembre de 1973. La sonda
Pioneer 11 le siguió justo un año después. Se tomaron las primeras fotos cercanas de Jupiter y de los satélites galileanos, se estudió su atmósfera, se detectó su campo magnético y se estudiaron sus cinturones
de radiación. Las misiones Voyager 1 y Voyager 2 visitaron Júpiter en 1979 revolucionando el conocimiento que se tenía del planeta y sus lunas y descubriendo también su sistema de anillos. Se descubrió que su luna
Ío tenía una actividad volcánica extraordinaria y que Júpiter también poseía anillos. En 1995 la misión Galileo, que constaba de una sonda y un orbitador, inició una misión de exploración del planeta de siete años. Aunque la misión tuvo importantes problemas con la antena
principal que retransmitía los datos a la Tierra, consiguió enviar informaciones con una calidad sin precedentes sobre los satélites de Júpiter, descubriendo los océanos subsuperficiales de Europa y varios ejemplos de vulcanismo activo en Ío. La misión fue desactivada lanzando
al orbitador contra el propio planeta para evitar una colisión futura con Europa que pudiera contaminar sus hielos. En diciembre de 2000 la misión espacial Cassini/Huygens realizó un sobrevuelo lejano en su viaje
con destino a Saturno obteniendo un conjunto de datos comparable en cantidad a los sobrevuelos realizados por las Voyager pero con una calidad de las observaciones mucho mejor. A finales de Febrero de 2007
el planeta Júpiter fue visitado por la sonda New Horizons en su viaje a Plutón. Están en estudio misiones dedicadas a la observación de Júpiter y su luna Europa por parte de las agencias espaciales Nasa y ESA.
http://es.wikipedia.org/wiki/J%C3%BApiter_%28planeta%29
|